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ABSTRACT

SA finite-difference method for the large deformation elastic-

plastic analysis of spherical caps is applied to predict the col-

lapse strength of initially imperfect deep spherical shells.

Twelve uniformly loaded hemispherical shell models with flat

spots at their apex are analyzed. For each model, a number of

shallow spherical regions containing the flat spot are selected

from its domain. One of these selected shallow regions yields a

minimum buckling pressure; this minimum value is taken as the

theoretical buckling load for the shell model under consideration.

Present solutions are in good agreement with existing experimental

and empirical results. The good comparison suggests that initially

imperfect deep spherical shells may be analyzed by using a much

simpler mathematical model - the spherical cap, and thus the

analytical cost may be greatly reduced. This also demonstrates

that the collapse of imperfect spherical shells is primarily a

local phenomenon and therefore dependent on local geometry. Con-

sequently, the presence of initial imperfections must be fully

taken into consideration in any large deformation inelastic

buckling analysis before such analysis can be expected to quan-

titatively predict the collapse strength of practical shell

structures.
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INTRODUCTION

Buckling analysis of spherical shell structures has received

considerable attention in the literature. This may be attributed

to the fact that the use of spherical shells to resist uniform

external hydrostatic pressure has increased rapidly in recent

years. This increased use results from the introduction of mis-

siles and other spacecrafts and also from the growing interest in

hydrospace.

Timoshenko [1] summarized the classical small deflection

theory for the elastic buckling of a complete spherical shell.

Unfortunately, earlier tests conducted in Ref. [2] provided only

one-fourth of the collapse strength predicted by the classical

buckling theory. The huge discrepancy existed between the theory

and the test is traceable. The test specimens used in Ref. [2]

were formed from flat plates, which inevitable introduced

significant departures from sphericity as well as variations in

thickness and residual stresses. Since the initial imperfection

among these adverse factors introduced has been assumed to be the

primary source that affects the collapse strength of shell struc-

tures [3-6], the discrepancy is consequential and their comparison

is inappropriate.

To eliminate or at least partially reduce the adverse effect

from flat plates, a series of nearly perfect machined shells were

made in Refs. [7-9]. The test results showed their collapse
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strength was nearly 90% of the classical buckling pressure.

These tests not only provide a strong support to the classical

small deflection buckling theory of initially perfect spherical

shells, but indicate that the initial imperfection does play a

significant role in reducing shell load-carrying capacity.

In view of the practicality, it is very difficult, if not

impossible, to manufacture or measure most spherical shells with

sufficient accuracy to justify the use of classical shell

buckling formulas in design. It thus becomes evident that we

should consider the unevenness factors in the shell buckling

analysis. Since most contributions to the unevenness factors,

such as variation in thickness, residual stress, boundary con-

ditions, etc. may be, at least on occasions, are fairly well con-

trolable, the effect of initial departures from sphericity

appears most worthy of investigation.

In connection with this investigation, the large deflection

elastic buckling analysis was performed in Ref. [5] for complete

spherical shells with a dimple type of initial imperfections.

Focused only on shallow spherical portions of these complete

shells, numerical solutions of these modified shell structures

[6] compare quite satisfactorily with those of [5].

The comparison by itself prompts a basic assumption that the

collapse of initially imperfect shell structures is primarily a

local phenomenon and therefore critically dependent on local

geometry.

For the purpose of the same investigation with an extension
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to include both elastic and inelastic behavior, 62 machined

hemispherical shell models with local thin spots and flat spots

and subjected to uniform external hydrostatic pressure were

tested in Ref. [3]. Based on the classical buckling equation,

empirical formulas were also proposed in the same reference,

using local geometry rather than nominal shell dimensions to

account for the effect of initial imperfections on the collapse

strength. Buckling loads obtained from both experiments and

empirical formulas are in good agreement. This good agreement

lends a strong support to the validity of the aforementioned

basic assumption.

By adopting the same basic assumption, the computer program

developed in Ref. [4] for the large deformation elastic-plastic

buckling analysis of spherical caps is utilized in this report

to predict the collapse strength of those hemispherical shells

with flat spots in Ref. [3]. The present analysis has following

purposes. First, through a comparison of present analytical

solutions with empirical and test results of [3], it is intended

to varify the validity of the computer code developed in Ref.

[4]. Secondly, it is attempted to illustrate the degree of

reliability of the spherical cap theory when it is applied to

predict the collapse strength of initially imperfect deep spher-

ical shells in both elastic and inelastic behavior. Finally, we

also intend to demonstrate the usefulness of the spherical cap

theory by its applications. The final purpose is, in effect, to

justify the efforts of numerous research activities as have been

done so far for the development of the shallow spherical shell

theory.
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LARGE DEFORMATION ELASTIC-PLASTIC THIN SPHERICAL CAP THEORY

Governing Equations

As mentioned in the previous Section, the large deformation

elastic-plastic thin shallow spherical shell theory [4] is

utilized in this paper to predict the collapse strength of

initially imperfect deep spherical shells. A shell is called

"thin" if the ratio of its thickness to the radius of curvature

of its middle surface is much less than unity; and a spherical

shell is called "shallow" if its rise at the center is less

than, say, one-eight of its base diameter.

The geometry of a clamped spherical cap is shown in

Fig. l(a), in which H is the central height, R the shell radius

to the midsurface of the shell, a the base radius, and h the

shell thickness; W(r) and U(r) are displacement components

along normal and tangential directions, respectively, and

Wi(r) is the initial imperfection; q is the applied uniform

pressure. Also shown in Fig. l(b) are membrane forces Nr and

N., the transverse shear Qr and moments Mr and Me.

In view of the axisymmetric nature of the problem encoun-

tered here (Fig. 1), we need only consider the situation along

a generic radius. Governing equations of this problem have

been derived in a great detail in Ref. [4], only a summary of

these equations will be given here. For convenience, let's

first introduce following nondimensional quantities:

t i F
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x = r/a m4 = 12(1-v 2)

A 2 in 2a2 /Rh q cr = 4Eh 2 /R 2m2

(1/

( )' a( )/'x p = q/qcr

u = a U/h 2  w = W./h

w W./h

where E is Young's modulus, v is Poisson's ratio, and qcr is

the classical buckling pressure of a complete sphere of the

same radius of curvature and thickness; X is a spherical cap

geometric parameter.

Governing equations in terms of these nondimensional

quantities are written as follows:

u ' -u + g(w) (1- )aq (2)x x Eh'

, 2 w1 X2

V4 w - 12(e +VEO )(w+) Z(E1o+fEr) f-+,k!)
m 2 In2

(3)

44 p m4a4 (P+P

m 2  Eh4  3

where

g(w) fl') + vf (w) + (l-v)[fr(w) fe(w)]/x

_ 
2

fr (w) m2 w + 1(w') 2 + w w

rI2
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,qP NP(W' + l/R) + NP(W /r + l/R)

=qP (MP)" + 2(MP)'I/r (Mp)'/r

ql? in these expressions are effective plastic forces. Effective
1

plastic membrane forces NP , NP , and effective plastic momentsr' e
MP MP are expressed in integral forms of plastic strains epr 0

and e
p :

(NPJ [E h/2 eP
r - [E dz

NP /2 eoP



MP~ fh/2 e
-/2 er zdz (S)

where z is the vertical coordinate through the shell thickness

Fig. ).

Boundary condition at outer edge of the spherical cap is

assumed to be clamped which requires: u(l) = w(l) = w'(l) = 0.

Due to symmetry at apex, we also have u(O) = w'(0) = 0.

Constitutive Equations of Plasticity

'rhe flow rule of von Mises and the Ziegler-Prager kinematic

hardening rule are selected to describe the inelastic material

property in this study. This selection has the advantage that

the Bauschinger effect is properly accounted for. In the in-

cremental solution procedure for elastic-plastic problems, it is

required to define constitutive relations and loading criteria.

To begin with, let's discuss loading criteria. For this

purpose, it needs to introduce f = (af/3 ij) d oij, where f = 0

is the yield surface, aij is stress vector, and aij is the

position vector of the yield surface center C which before

plastic deformation takes place is located at the origin. For

the case of plane stress (Fig. 2), f takes the form

f2 + 2 2 =0 (6)1 2 2 Y



where ay is the yield ttress in uniaxial tension and o

a1 -al, 02 = 02 a2 . Loading, unloading and neutral loading

are associated with the plastic state f = 0, and are character-

ized by f > 0, f < 0 and f = 0, respectively.

For a shell deforming into a plastic range, the total

strain in a point within the thickness can be considered as a

combination of its elastic and plastic components:

{e} = {ee} + {ep} (7)

When loading or neutral loading takes place, stress in-

crements are simply expressed in terms of total strain incre-

ments 14] as follows:

AuC 11 C 12 e1

A01= Li: Ael (8)
o2  C21 C22 e2

where

Cl 1 = (D + E $2)

E2

C1 2 = EQDv - ES1S2 ) = C2 1

C2 2 = E(D + E S2)

Q = D(1 v 2  + E(S2 + 2vSlS 2 + S2

1= ( I a12)l ' S2 a {2 -a 1/2)/ay ,D- =A
Aep



Ixpression for D implies that its value is equal to the slope

of the uniaxial stress-plastic strain curve.

Figure 3 shows three types of hardening, the 1) value

associated with each of them may be given here: (i) for an

elastic-ideally pla-tic material, D = 0, (ii) for a linear

hardening material, D = EEt/(E-Et), where Et is the tangent

modulus, (iii) for the case of nonlinear hardening, the expres-

sion of D, which is obtained on the basis of the Ramberg-

Osgood representation for a uniaxial nonlinear stress-strain

curve, is omitted here. Because of requiring a rather lengthy

interpretation, readers are referred to Ref. [4] for this ex-

pression.

For a material point whose stresses are still in an elastic

range or in an unloading situation, Hook's Law should be applied:

S 1 (9)

AG V2V1 1 Ae

Solution Procedure

For convenience, a simple flow chart is sketched in Fig. 4

to explain the general solution procedure. The entire process

is divided into two major loops, namely, the elastic solution

and material property loops.

In the elastic solution loop, all material properties are

held constant, the effective plastc loads qP are fixed and

combined with the applied load q. The problem is thus reduced
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to an elastic large deformation problem. The solution plan to

this problem is to superpose a finite-difference mesh on the

one-dimensional shell domain, replace nonlinear differential

equations by a set of two nonlinear algebraic finite-difference

equations, and solve the resulting set of equations by the non-

linear relaxation method [10].

In the material property loop, effective plastic load

terms are updated so that their values correspond to the com-

puted state of stress and to the specified nonlinear stress-

strain relation at all points over the shell surface and through-

out the shell thickness.

Iterations keep going back and forth on these two loops

until the specified material property and equilibrium equations

are simultaneously satisfied. For more detailed information

on the solution procedure outlined here, readers are referred

to Ref. [4].
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EMPIRICAL FORMULAS FOR THE COLLAPSE STRENGTH OF IM\PERFICT DIAIIJ

SPHERICAL SHELLS

Based on many experimental results, Krenzke and Kiernan

[31 proposed empirical formulas for the calculation of the col-

lapse strength of initially imperfect spherical shells. These

equations are essentially the modifications of the classical

buckling equation for a complete spherical shell [1], taking

into account.the limitations of realistic fabrication techniques

and the effects of initial departures from sphericity and

thickness variations on the elastic or inelastic collapse

strength.

For convenience, we shall first list the classical buckling

equation of a complete sphere and empirical formulas for the

elastic and inelastic collapse strength of near-perfect

spherical shells. By assuming v = 0.3, these equations of

interest are given as follows:

qcr = 1.21 E(h/R) 2  (10)

q, = 0.7 q cr 0.84 E(h/R 0 )
2  (11)

qE = 0.84V (h/R0)2  (12)

where R0 is the outer radius of the sphere. Equation (10) is

the classical buckling equation of a complete spherical shell

as already given in Eq. (1) (R in this equation is the radius

Ii

l HI



12

to the midsurface of the shell).

Considering the difficulty involved in manufacturing or

measuring most spherical shells with sufficient accuracy to

justify the use of the classical equation in design, it is

suggested in Ref. [31 that Eq. (10) be replaced by Eq. (11)

for calculating the buckling strength of near perfect spheres.

Eventually Eq. (11) states that near-perfect spheres collapse

at about 0.7 times the classical strength.

A similar formula, Eq. (12), is also proposed for predicting

the inelastic buckling strength of near-perfect spheres. The

secant and tangent moduli used in Eq. (12) are derived from the

typical uniaxial tension or compression stress-strain curve. A

shell is considered to be nearly perfect if the ratio of its

maximum imperfection (Wi)max to its wall thickness h is less

than 2 to 3 percent.

Before going to list empirical formulas for the collapse

strength of imperfect spherical shells, we shall here introduce

a so called "critical arc length" -- Lc . By taking a X value of

2.2* and a (spherical cap base radius) equal to Lc /2**, Lc can

be obtained from X expression of Eq. (1) as follows:

Lc = 2.42VR--ha (13)

*From theoretical and experimental results of spherical
caps, for A values greater than approximately 2.2, the detri-
mental effect of clamping the edges diminishes as the shells
become more stable; see Ref. [3].

**Because of the assumed shallowness, the cord length is
approximated by the arc length.

UnmmnnI N il,
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in which ha and R1 are the average shell thickness and the

local radius to the midsurface of the shell over a critical

arc length associated with a X value of 2.2.

Empirical formulas for the collapse strength of initially

imperfect spherical shells can now be readily obtained from ex-

pressing Eqs. (11-12) in terms of local geometry:

q1 = 0.84 E(ha/Rl )2 (14)
1 a 0

q1 = 0.84s 71(h /R1 )2 (15)
E ~s t a 00

where R is the local radius to the outside surface of the10

shell over a critical arc length associated with a X value of

2.2.

The primes in Eqs. (14-15) simply imply that the local

geometry is used to calculate the buckling pressure. In fact,

Eq. (15) may be used to compute the buckling strength of

initially imperfect spheres which collapse in either the

elastic or inelastic region, since Eq. (15) reduces to Eq. (14)

in the elastic region.

These formulas are essentially "engineering type" solutions

and do not intend to be regarded as a theoretical treatment of

the strength analysis of imperfect spherical shells. The effect

of initial deviations from sphericity is extremely important in

both elastic and inelastic buckling cases, because the local

radius appears in their buckling equations to the second power.

.j4n ninml U llmln u
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EXPERIMENT

Series FS models experimented in Ref. [3] are selected in

this paper for the purpose of verifying the theoretical work.

This series of models was designed to study the effect of

local imperfections on the hydrostatic collapse strength of

deep epherical shells which collapse in either the elastic or

inelastic region.

Series FS consists of 36 machined models of hemispherical

shells with local flat spots as shown in Fig. S. All models

have the same inner diameter of 1.625 inches. Each model has

nearly uniform wall thickness, however, dimensions of the wall

thickness are different from model to model. The flat spots,

which were machined in the apex of each model, have an included

angle of 10' for models FS-1 through FS-9, 200 for models FS-10

through FS-27, and 300 for models FS-28 through FS-36. The

local radius of curvature is held constant for each flat spot

and is about 1.15 times the nominal radius for Models FS-10

through FS-18 and about 1.4 times the nominal radius for all

remaining models.

Each model was machined in an identical manner. The in-

terior contours were machined by use of form tools, the exterior

contours by supporting the inside contours on a mating mandrel

and by generating the outside surface using a lathe with a ball-

turning attachment.

The model dimensions are given in Table 1. These models
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were machined from 7075-T6 aluminum bar stock whose stress-

strain curve was displayed in Fig. 6. For simplicity in

analysis, the nonlinear material hardening behavior is approx-

imated with a linear hardening: E (Young's modulus) =

10.8 x 106 psi, Et (tangent modulus) = 1.1 x 106 psi and

* (initial yield stress) = 7.8 x 104 psi. As already mentioned,Y

a Poisson's ratio v of 0.3 in the elastic range is assumed for

all models.

Each model was tested under external hydrostatic pressure.

Pressure was applied in increments and each new pressure level

was held at least 1 minute. The final pressure increment was

always less than 2 percent of the maximum pressure. Every

effort was made to minimize any pressure surge when applying

pressure.
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THEORETICAL SOLUTIONS AND COMPARISON WITH EMPIRICAL AND

EXPERIMENTAL RESULTS

The large deformation elastic-plastic spherical cap theory

outlined in an earlier section is applied here for the buckling

analysis of initially imperfect hemispherical shells. Hemispher-

ical shells considered here are those of 36 Series FS models

tested in Ref. [3]. These shell structures have flat spots at

their apex. As has been mentioned in the previous section, the

material property and shell geometry are given in Fig. 6 and

Table 1, respectively.

Figure 7 shows a clamped spherical cap which is produced

from a hemispherical shell. It is noted that the spherical cap

selected is well beyond the flat spot region to fully account

for the effect of the entire initially imperfect region. The

included angle and radius of curvature to the midsurface are

0 and R for the entire spherical cap, a and R1 for the

flat spot, and 4 and R for the perfect portion occupied by the

flat spot. All radii mentioned here are referred to the mid-

surface of the shell.

An immediate question should be raised here: what is the

appropriate size of a spherical cap to be selected? The answer

to this question may have to resort to the requirement for a

spherical cap. The assumed shallowness - the rise at the cap

center is less than one-eighth of its base diameter - asks for

0 < 60 ° .
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But the requirement for a shell to be thin - the ratio of

the wall thickness to the radius of curvature is much less

than unity - is too vague to have a precise criterion. However,

based on both experience and this vague requirement, we shall

here provide an approximate guideline which may be quite helpful

in selecting a cap size. From X = 1.82 a/RN it is proposed

X > 2.5 for a shell being thin. This proposed guideline is

quite in line with the argument for deciding the critical arc

length [3]. In summary, a shell is called thin and shallow if

X > 2.5 and 0 < 600; these are two basic guidelines adopted in

this paper for forming a spherical cap from a hemispherical

shell (Fig. 7).

Another important aspect concerning the buckling analysis of

initially imperfect spherical shells is what is a better way of

expressing initial imperfections. Determining the local radius

over a critical arc length around the imperfect region as has

been suggested in Ref. [3] is very hard to accomplish in prac-

tice, and for some occasions is almost impossible to carry out

when the irregularity of unevenness is involved. One of the

best ways to deal with this situation is by measuring departures

from sphericity, Wi (Fig. 1), for a number of nodal points on a

generic spoke. Accordingly, the initial imperfection at a

point within the flat spot region (Fig. 8) may be approximated

by

W= R(cos e - cos .)- Rl (cos y - cos -) (16)
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This approach poses a flexibility that any imperfection pattern

including irregular distribution of deviations from sphericity

can easily be measured and readily be adopted in governing

equations for the theoretical analysis.

Figure 9 shows a one-dimensional finite-difference mesh

superposed on the axisymmetric spherical cap domain; a clamped

edge is assumed. An appropriate fixed number of evenly spaced

nodal points are chosen in the flat spot region. Additional

nodal points with the same even spacing are also distributed in

the remaining perfect region. The number of nodal points in

this region is varied depending on the size of the spherical

cap selected. X0 and X appeared in this Figure represent the

shallow region geometric parameters for the flat spot and the

selected spherical cap, respectively.

Twelve hemispheres among 36 Series FS models listed in

Table 1 are chosen for the present analysis. A well balanced

choice on these test specimens is achieved by selecting every

other two model according to the sequence of model number dis-

played in Table 1. For each model, the analysis is performed

on a number of X values for the purpose of verifying the local

phenomenon on the collapse of initially imperfect spherical

shells.

Numerical solutions in the form of buckling load versus

geometric parameter of the selected spherical cap, qcr/X, are

tabulated in Table 2. Also recorded in this Table are those

of experiment and empirical method [3]. By comparing the values
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spherical cap sizes larger than the flat spot has been considered.
From the values of (W) max/h, it also appears that quite a variety

of imperfection magnitudes has been involved in these models.

The solution pattern emerged shows a tendency of a mono-

tonic decreasing and then an increasing for qcr against X,

having a small to moderate rate of change of qcr with respect

to X for most cases. In each case, the spherical cap thlt

yields .a minimum qcr value* represents a shallow region of the

hemisphere which is subjected to the least detrimental effect

of clamping the edge. Therefore, this critical spherical cap may

simulate the actual deformed (or damaged) area of the shell struc-

ture when the collapse occurs. Based on this argument, it is

suggested that the buckling pressure of the critical spherical

cap be taken as the theoretical collapse pressure for its

associated hemispherical shell.

It should be very interesting to compare the critical

spherical cap region with the actual deformed area of the collapsed

model. A successful comparison will not only provide a strong

evidence of the local phenomenon on the collapse of imperfect

spherical shells, but also provide a strong support to the

applicability of the spherical cap theory to deep imperfect

spherical shell problems.

*We may henceforth call the spherical cap which yields a
minimum q the "critical spherical cap," and designate its
correspon Ing minimum q as q , vhich stands for the theoretical
buckling pressure for sfferical shells under considerations.

l lnniiEiia



- 20 -

For the purpose of references, two typical load vs central

deflection curves are plotted in Figs. 10 and 11 for the critical

spherical caps of Models FS-25 and FS-31, respectively. For the

cap of Fig. 10, plastic yielding was set in at the load level of

2600 psi, but, for the case of FS-31 model, there was no evidence

that plastic deformation has ever occurred.

The comparison between theoretical and experimental results

shows that four models have an average qt/q exp value of 1.0375

while this value reduces to 0.886 for remaining eight. The com-

parison is regarded to be good, considering the fact that the

flat spot models have abrupt change in curvature, which would

not be true for imperfections in most practical shells and thus

is considered as the case of severe imperfections. Taking this

into account and other effects related to the clamped edge which

is artificially introduced to the shell structure, we may dis-

regard the difference of a less than 4% in buckling loads in-

volved in those four models, and view theoretical results as

the lower-bound solutions for imperfect spherical shells.

A similar comparison between empirical and experimental

data gives an average qj/qexp value of 1.13 for a group of

seven models and 0.963 for the remaining group. Based on similar

reasons, empirical data may be treated as the upper-bound solu-

tions for imperfect spherical shells under consideration.

In the empirical approach, the analysis is centered on a

shallow spherical portion with a X value of 2.2 which in some

models falls within the flat spot region. A most striking

nmnnmfn
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example may be referred to Model FS-31. Its flat spot poses a

A0 value of 4.17 compared with a shallow portion of 1 = 2.2

utilized in the analysis. Without taking the entire imperfect

region into consideration may be a contributing factor, among

others, responsible for the huge difference between its empirical

and experimental buckling results - 747 psi vs 525 psi.

For very shallow spherical regions, say, with X < 2.5, the

detrimental effect of boundary conditions or secondary moments

becomes more severe and tends to increase their rigidity, which

may be a part of reasons to have them yield higher buckling

loads than those of having larger X values. This argument may

be supported by the fact that the critical spherical caps employed

in the present theoretical study, having X values of ranging from

3.4 to 7.6, possess for most cases higher load-carrying capaci-

ties than their corresponding empirical values.

Generally speaking, the comparison among these three sets

of results is surprisingly good. The good comparison suggests

that initially imperfect spherical shells can be-analyzed by

using a much simpler mathematical model - the spherical cap

by which the analytic cost can be greatly reduced. At the same

time, this also emphasizes the usefulness of the shallow

spherical shell theory because it can be applied to solve

important practical structural problems.

We shall here discuss some observations made in Refs.

[4,5,6,11] concerning the influence of plastic yielding and

initial imperfections. The first observation is that the initial

n- I illl~li~V
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imperfection has a great impact on reducing the buckling strength

of the shell structure, the degree of the impact increased with

increase of the imperfection magnitude.

This observation may be confirmed by, for example, a compari-

son of results obtained for Models FS-13 and 22. Both shells are

almost identical except for the local radius in the flat spot;

RI/R = 1.15 for FS-13 and 1.4 for FS-22. The difference in local

radii creates a difference in imperfection magnitudes:

(W)ma x/h = 0.162 and 0.346 for FS-13 and 22, respectively. As

a result of this difference, FS-13 model with less severe

imperfections yields a higher buckling load than FS-22: 910 psi

vs 770 psi theoretically, or 1040 psi vs 718 psi experimentally.

The next observation is that plastic yielding also has a

significant influence in reducing the buckling pressure of

spherical shell structures, this influence increased with increase

of the thickness-to-radius ratio [4,11,12]. This observation

may be confirmed by, for example, comparing the results of

Models FS-19 and 25. Both models are identical with a difference

only in the wall thickness. For Model FS-19 of h/R = 0.0062,

no plastic deformation ever occurs during the entire loading

process, and hence, its buckling load (140 psi) is an elastic

solution. On the other hand, Model FS-2S of h/R = 0.0304, having

plastic yielding set in approximately at a load level of 2600 psi,

yields an elastic-plastic buckling pressure of 3700 psi. The

influence of plastic yielding increased with increase of the

thickness-to-radius ratio is quite obvious.

41n~ n n nllln•l
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CONCLUSIONS

A finite difference method for the large deformation elastic-

plastic buckling analysis of spherical caps developed in Ref. [41

is applied to predict the collapse strength of hemispherical

shells with flat spots. Twelve out of 36 hemisphere models

experimented in Ref. [3] are selected for the analysis. In each

selected model, a number of shallow spherical regions containing

flat spots and with clamped edges are chosen from its domain. The

critical spherical cap is the one, among those chosen, which

yields a minimum buckling pressure; this minimum value is taken

as the theoretical buckling load for its associated imperfect

hemispherical shell.

Present theoretical solutions are in good agreement with

those of experiment and empirical method [3]. Compared with

those of experiment, present results represent lower-bound

solutions to these shell problems, having an average of nearly

90% accuracy, while empirical data provide upper-bound solutions

with an average of about only 13% in error.

Good comparison among these three sets of results suggests

that initially imperfect spherical shells can be analyzed by

using a much simpler mathematical model - spherical cap - by

which the analytical cost can be greatly reduced. At the same

time, this good comparison also emphasizes the usefulness of

the shallow spherical shell theory because of its applicability

to important practical structural problems. This comparison

tI
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also serves to justify the efforts made in so many publications

for the development of shallow spherical shell theories.

An important implication also emerged from this comparison

is that the collapse of spherical shells is primarily a local

phenomenon and therefore critically dependent on local geometry,

a view also shared in Ref. [3]. This implication makes it clear

that the presence of initial imperfections should be fully taken

into consideration in any large deformation analysis before such

analysis can be expected to quantitatively predict the collapse

strength of practical shells.

Present solutions together with experimental and empirical

data confirm a general belief that the initial imperfection plays

an important role in reducing the collapse strength of shell

structures, the influence of the imperfection increased with

increase of its magnitude [4,5,6,11]. It is also found that

plastic yielding has a significant effect of weakening spherical

shells, the degree of this effect increased with increase of

the thickness-to-radius ratio. This is a finding also observed

in Refs. [4,11,12].
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Fig. 1 - Geometry, stress resultants and moments for axisymmetric
clamped spherical cap with initial imperfection.
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Fig. 2 - Kinematic hardening in plane stress.
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Fig. 4- Iteration procedure for large deformation elastic-
plastic problems.
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Fig. 7 - Spherical cap obtained from an initially imperfect hemisphere.
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Fig. 8 - Determination of imperfections for a spherical cap

with flat spot.
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Fig. 9 - One dimensional finite-difference mesh on axisymmetric

spherical cap domain.
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